a) \displaystyle \int\,\dfrac{1}{\cos\,x}\,dx
b) \displaystyle \int\, \dfrac{1}{\cos^3\,x}\,dx
SOLUCIÓN.
a)
\displaystyle \int\,\dfrac{1}{\cos\,x}\,dx=
\displaystyle =\int\,\sec\,x\,dx
\displaystyle =\int\,\sec\,x \cdot \dfrac{\sec\,x+\tan\,x}{\sec\,x+\tan\,x}\,dx
\displaystyle =\int\,\dfrac{\sec^2\,x + \sec\,x\cdot \tan\,x}{\sec\,x+\tan\,x}\,dx
\displaystyle \overset{(1)}{=}\int\,\dfrac{\sec^2\,x + \sec\,x\cdot \tan\,x}{\sec\,x+\tan\,x}\,dx
\displaystyle = \int\,\dfrac{du}{u}
\displaystyle = \ln\,|u|+C
\displaystyle = \ln\,|\sec\,x+\tan\,x|+C
\displaystyle = \ln\,\left|\dfrac{1}{\cos\,x}+\tan\,x\right|+C \quad \quad (I)
----
(1) Cambio de variable: u=\sec\,x+\tan\,x \Rightarrow du = \dfrac{1}{\cos^2\,x}\, ( 1+\sin\,x)\,dx = (\sec^2\,x + \tan\,x\cdot \sec\,x)\,dx
----
b)
\displaystyle \int\, \dfrac{1}{\cos^3\,x}\,dx=
=\displaystyle \int\, \dfrac{1}{\cos^2\,x}\cdot \dfrac{1}{\cos\,x}\,dx
\overset{(2)}{=}\displaystyle \dfrac{\tan\,x}{\cos\,x}-\int\, \dfrac{\tan\,x \cdot \sin\,x}{\cos^2\,x}\,dx
=\displaystyle \dfrac{\tan\,x}{\cos\,x}-\int\, \dfrac{\sin^2\,x}{\cos^3\,x}\,dx
=\displaystyle \dfrac{\tan\,x}{\cos\,x}-\int\, \dfrac{1-\cos^2\,x}{\cos^3\,x}\,dx
=\displaystyle \dfrac{\tan\,x}{\cos\,x}-\int\, \dfrac{1}{\cos^3\,x}\,dx+\int\, \dfrac{\cos^2\,x}{\cos^3\,x}\,dx
=\displaystyle \dfrac{\tan\,x}{\cos\,x}-\int\, \dfrac{1}{\cos^3\,x}\,dx+\int\, \dfrac{1}{\cos\,x}\,dx
Con lo cual
2\,\displaystyle \int\, \dfrac{1}{\cos^3\,x}\,dx=\displaystyle \dfrac{\tan\,x}{\cos\,x}+\int\, \dfrac{1}{\cos\,x}\,dx
luego, teniendo en cuenta (I) el resultado del apartado anterior
2\,\displaystyle \int\, \dfrac{1}{\cos^3\,x}\,dx=\displaystyle \dfrac{\tan\,x}{\cos\,x}+\ln\,\left|\dfrac{1}{\cos\,x}+\tan\,x\right|
de donde se deduce que
\displaystyle \int\, \dfrac{1}{\cos^3\,x}\,dx=\dfrac{1}{2}\left( \dfrac{\tan\,x}{\cos\,x}+\ln\,\left|\dfrac{1}{\cos\,x}+\tan\,x\right| \right)+C
----
(2) Por partes:
w=\dfrac{1}{\cos\,x} \Rightarrow dw = -\dfrac{1}{\cos^2\,x}\cdot ( -\sin\,x)\,dx = \dfrac{\sin\,x}{\cos^2\,x}\,dx
dt=\dfrac{1}{\cos^2\,x}\,dx \Rightarrow t=\tan\,x+k
----
\square
No hay comentarios:
Publicar un comentario
Gracias por tus comentarios