ENUNCIADO. Demostrar que el determinante llamado de Vandermonde de orden tres es igual a la expresión del segundo miembro de la siguiente igualdad
$$\begin{vmatrix}1 & \alpha_1 & \alpha_{1}^{2}\\ 1 & \alpha_2 & \alpha_{2}^{2}\\ 1 & \alpha_{3} & \alpha_{3}^{2}\end{vmatrix}=(\alpha_3-\alpha_2)(\alpha_3-\alpha_1)(\alpha_2-\alpha1)$$
SOLUCIÓN.
Procedemos a reducir el determinante hasta escalonarlo superiormente ( empleando las propiedades de los determinantes );
hecho esto, el determinante reducido es igual al producto de los elementos de la diagonal principal.
$\begin{vmatrix}1 & \alpha_1 & \alpha_{2}^{2}\\ 1 & \alpha_{2} & \alpha_{2}^{2}\\ 1 & \alpha_{3} & \alpha_{3}^{2}\end{vmatrix}\overset{-f_1+f_2\,\rightarrow\,f_2\;;\;-f_1+f_3\,\rightarrow\,f_3}{=}\begin{vmatrix}1 & \alpha_{1} & \alpha_{1}^{2}\\ 0 & \alpha_{2}-\alpha_{1} & \alpha_{2}^{2}-\alpha_{1}^{2}\\ 0 & \alpha_{3}-\alpha_{1} & \alpha_{3}^{2}-\alpha_{1}^{2}\end{vmatrix}\overset{-\frac{\alpha_3-\alpha_1}{\alpha_2-\alpha_1}\cdot f_2+f_3\,\rightarrow\,f_3}{=}$
    $=\begin{vmatrix}1 & \alpha_1 & \alpha_{1}^{2}\\ 0 & \alpha_{2}-\alpha_{1} & \alpha_{2}^{2}-\alpha_{1}^{2}\\ 0 & 0 & (\alpha_3-\alpha_1)(\alpha_3-\alpha_2)\end{vmatrix}=1\cdot (\alpha_3-\alpha_1)(\alpha_3-\alpha_2)(\alpha_2-\alpha_1)=$
                                                                  $=(\alpha_3-\alpha_2)(\alpha_3-\alpha_1)(\alpha_2-\alpha_1)$
NOTA:
Fácilmente, podemos generalizar esta fórmula a órdenes mayores, así:
$$\begin{vmatrix}1 & \alpha_1 & \alpha_{1}^{2} & \alpha_{1}^{3}\\ 1 & \alpha_2 & \alpha_{2}^{2} & \alpha_{2}^{3} \\ 1 & \alpha_{3} & \alpha_{3}^{2} & \alpha_{3}^{3} \\ 1 & \alpha_{4} & \alpha_{4}^{2} & \alpha_{4}^{3} \end{vmatrix}=(\alpha_4-\alpha_3)(\alpha_4-\alpha_2)(\alpha_4-\alpha_1)(\alpha_3-\alpha_2)(\alpha_3-\alpha_1)(\alpha_2-\alpha_1)$$ Y, en general,
$$\begin{vmatrix}1 & \alpha_1 & \alpha_{1}^{2} & \alpha_{1}^{3} & \ldots & \alpha_{1}^{n}\\ 1 & \alpha_2 & \alpha_{2}^{2} & \alpha_{2}^{3} & \ldots & \alpha_{2}^{n} \\ 1 & \alpha_{3} & \alpha_{3}^{2} & \alpha_{3}^{3} & \ldots & \alpha_{3}^{n} \\ 1 & \alpha_{4} & \alpha_{4}^{2} & \alpha_{4}^{3} & \ldots & \alpha_{4}^{n} \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 1 & \alpha_{n} & \alpha_{n}^{2} & \alpha_{n}^{3} & \ldots & \alpha_{n}^{n} \end{vmatrix}=$$
    $=(\alpha_n-\alpha_{n-1})(\alpha_n-\alpha_{n-2})\ldots (\alpha_n-\alpha_1) \overset{\underbrace{\binom{n}{2}\; \text{factores}}}{\ldots} (\alpha_3-\alpha_2)(\alpha_3-\alpha_1)(\alpha_2-\alpha_1)=$
      $\displaystyle =\prod_{1\le i \le j \le n}^{n}\,(\alpha_j-\alpha_i)$
$\square$
No hay comentarios:
Publicar un comentario
Gracias por tus comentarios