Enunciado:
Consideremos el espacio afín formado por espacio vectorial estándar $(\mathbb{R}^{3},+,\cdot_{\mathbb{R}})$ sobre el cuerpo de los números reales $\mathbb{R}$ con el siguiente sistema de referencia:
    i) El origen de coordenadas situado en el punto $O(0,0,0)$
    ii)La base $\mathcal{C}$ del espacio vectorial $(\mathbb{R}^{3},+,\cdot_{\mathbb{R}})$ es la formada por los vectores
            $\mathcal{C}=\{e_1=(1,0,0)\,,\,e_2=(0,1,0)\,,\,e_3=(0,0,1)\}$
                ( que es la base estándar o canónica).
Determinar la ecuación implícita del plano que pasa por los siguientes puntos:
              $P(1,0,0)$, $Q(0,1,0)$ y $R(0,0,1)$
Solución:
Antes de empezar, recordemos que la ecuación del plano $\pi$ en forma implícita viene dada por
    $\pi:\, A\,x+B\,y+C\,z+D=0$
siendo nuestro objetivo determinar los valores de los coeficientes $A$, $B$, $C$ y $D$. Esto se hará de la siguiente manera.
Al pertenecer los puntos
    $P(x_P,y_P,z_P)$, $Q(x_Q,y_Q,z_Q)$ i $R(x_R,y_R,z_R)$
a dicho plano, podemos afirmar que los vectores
    $u_1=(P_x-Q_x,P_y-Q_y,P_z-Q_z)$
    $u_2=(P_x-R_x,P_y-R_y,P_z-R_z)$
pertenecen a dicho plano y son linealmente independientes.
Como la dimensión de dicho plano $\pi$, como subespacio vectorial ( o variedad lineal ) es $2$, cualquier otro vector del plano
se podrá expresar como una combinación lineal de estos dos, es decir, estos dos vectores, $v_1$ y $v_2$, constituyen una base del plano.
Por tanto, siendo $(x,y,z)$ las coordenadas de un punto arbitrario del plano, el conjunto de vectores
    $\{(P_x-x,P_y-y,P_z-z), u_1, u_2\}$ tiene rango igual a $2$, luego el siguiente determinante es nulo
    $\begin{vmatrix} P_x-x& P_y - y &P_z - z \\ P_x-Q_x& P_y - Q_y &P_z - Q_z \\ P_x-R_x& P_y - R_y &P_z - R_z \end{vmatrix}$
Con las coordenadas de los puntos dados queda,
    $\begin{vmatrix} 1-x& 0 - y &0 - z \\ 1-0& 0 - 1 &0 - 0 \\ 1-0& 0 - 0 &0 - 1 \end{vmatrix}=0$
Y, resolviendo el determinante, encontramos la ecuación del plano $\pi_{PQZ}$ en forma implícita
    $\pi_{PQZ}:\,x+y+z-1=0$
Por tanto, los valores de los coeficientes de la ecuación implícita son:
    $A=B=C=1$ y $D=-1$
$\square$
Nota 1:   Se demuestra que otra forma de expresar esto es
    $\begin{vmatrix} x&y &z &1\\ x_P&y_P &z_P &1 \\ x_Q&y_Q &z_Q &1 \\ x_R&y_R &z_R &1 \end{vmatrix}=0$
que, en el caso que nos ocupa, se concreta así
    $\begin{vmatrix} x&y &z &1\\ 1&0 &0 &1 \\ 0&1 &0 &1 \\ 0&0 &1 &1 \end{vmatrix}=0$
Calculamos este determinante de orden $4$ desarrollando por los adjuntos de la primera columna
    $\begin{vmatrix} x&y &z &1\\ 1&0 &0 &1 \\ 0&1 &0 &1 \\ 0&0 &1 &1 \end{vmatrix}=x\,\begin{vmatrix} 0&0 &1 \\ 1&0 &1 \\ 0&1 &1 \end{vmatrix}-\begin{vmatrix} y&z &1 \\ 1&0 &1 \\ 0&1 &1 \end{vmatrix}=x-(1-y-z)$
                                                                              $=x+y+z-1$
Nota 2:   Observemos que al proyectar este plano sobre los planos coordenados $Oxy$ ( imponiendo $z=0$ ), $Oyz$ ( haciendo $x=0$ ) i $Oxz$ ( con $y=0$ ) obtenemos las correspondientes rectas:
    $x+y=1$, es decir, la recta $y=-x+1$ ( proyectando en el plano $Oxy$ )
    $z+y=1$, es decir, la recta $z=-y+1$ ( proyectando en el plano $Oyz$ )
    $x+z=1$, es decir, la recta $z=-x+1$ ( proyectando en el plano $Oxz$ )
Estas rectas formen ángulos de $45^{\circ}$ con los ejes respectivos.
No hay comentarios:
Publicar un comentario
Gracias por tus comentarios