Voy a calcular la siguiente integral indefinida $$\int\,k^x\,dx$$ siendo $k$ una constante positiva:
$\displaystyle \int\,k^x\,dx=$
$\displaystyle =\int\,(e^{\ln\,k})^x\,dx$
$\displaystyle =\int\,e^{x\,\ln\,k}\,dx$
$\displaystyle =\dfrac{1}{\ln\,k}\,e^{x\,\ln\,k}+C$
$\displaystyle=\dfrac{1}{\ln\,k}\,(e^{\ln\,k})^x+C$
$\displaystyle=\dfrac{1}{\ln\,k}\,k^x+C$
$\diamond$