Voy a calcular la siguiente integral indefinida $$\int\,k^x\,dx$$ siendo $k$ una constante positiva:
$\displaystyle \int\,k^x\,dx=$
  $\displaystyle =\int\,(e^{\ln\,k})^x\,dx$
    $\displaystyle =\int\,e^{x\,\ln\,k}\,dx$
      $\displaystyle =\dfrac{1}{\ln\,k}\,e^{x\,\ln\,k}+C$
        $\displaystyle=\dfrac{1}{\ln\,k}\,(e^{\ln\,k})^x+C$
          $\displaystyle=\dfrac{1}{\ln\,k}\,k^x+C$
$\diamond$