Mostrando entradas con la etiqueta función de distribución de probabilidad. Mostrar todas las entradas
Mostrando entradas con la etiqueta función de distribución de probabilidad. Mostrar todas las entradas

miércoles, 25 de abril de 2018

Un ejercicio de cálculo con la distribución normal

ENUNCIADO. Siendo $Z$ una variable normal tipificada ( $Z$ siguie la distribución $N(0,1)$ ), calcúlese $$P\{|Z-1|\le 1,5\}$$

Tengamos en cuenta que $|Z-1|\le 1,5 \Leftrightarrow \left\{\begin{matrix}Z-1 \le 1,5 & \text{si} & Z-1 \ge 0 & \rightarrow & Z-1\le 1,5 \\ \text{ó} \\ -(Z-1) \le 1,5 & \text{si} & Z-1 \prec 0 & \rightarrow & Z-1\ge -1,5 \end{matrix}\right.$
por consiguiente,
$P\{|Z-1|\le 1,5\}=P\{-1,5 \le Z-1 \le 1,5\}=P\{-0,5 \le Z \le 2,5\}=$
  $=P\{Z \le 2,5\}-P\{Z \le -0,5\}$
    $=P\{Z \le 2,5\}-P\{Z \ge 0,5\}$
      $=P\{Z \le 2,5\}-(1-P\{Z \prec 0,5\})$
        $=P\{Z \le 2,5\}+P\{Z \prec 0,5\}-1$
        $=F(2,5)+F(0,5)-1$
          $\overset{(1)}{=}0,9938+0,6915-1$
            $=0,6853$

(1) Consultando las tablas de la función de distribución de probabilidad $F(z)$
$\square$